If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+4x-22=0
a = 8; b = 4; c = -22;
Δ = b2-4ac
Δ = 42-4·8·(-22)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12\sqrt{5}}{2*8}=\frac{-4-12\sqrt{5}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12\sqrt{5}}{2*8}=\frac{-4+12\sqrt{5}}{16} $
| w/2-8=-3 | | 8x+10=-2x+40 | | 3x=6=4x=7 | | 2/3y2/5=5 | | X+19=8x+14 | | (9x+17)+(12x-6)=180 | | 0=-7v+8v | | --2x+5(2x-5)=-28-9x | | 1-12x=-30-9x | | -18+6k=6(k-3) | | 5x+3—3x=-7 | | 13p=7p | | -17+-4x=-3 | | 1/2(y-3)+(y-3)+y=68 | | 5x+3–3x=-7 | | 3/4m=18-2/7m | | 3m+12=-(3-8m) | | x(x+10)+120+120+120+100=720 | | 1/4*(8x-20)=6x-(x-25) | | -2/3(5p-16)=2 | | 5(4-k0=-10K | | -7-x=-3x+7 | | 0.35x-1.6=-0.5 | | 2x+20=6x+9 | | 4(v-7)+7(1-3v)=-10v-4 | | k=3+1/1.3333333333333 | | 13*x=29 | | 6e×7=90 | | 2(6v-6)=8v+8 | | 2e×6=60 | | 100x=0.46 | | 2(x-7)=6x-34 |